Liouville Correspondence Between the Modified KdV Hierarchy and Its Dual Integrable Hierarchy

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Liouville Correspondence Between the Modified KdV Hierarchy and Its Dual Integrable Hierarchy

We study an explicit correspondence between the integrable modified KdV hierarchy and its dual integrable modified Camassa-Holm hierarchy. A Liouville transformation between the isospectral problems of the two hierarchies also relates their respective recursion operators, and serves to establish the Liouville correspondence between their flows and Hamiltonian conservation laws. In addition, a n...

متن کامل

Integrable dispersionless KdV hierarchy with sources

An integrable dispersionless KdV hierarchy with sources (dKdVHWS) is derived. Lax pair equations and bi-Hamiltonian formulation for dKdVHWS are formulated. Hodograph solution for the dispersionless KdV equation with sources (dKdVWS) is obtained via hodograph transformation. Furthermore, the dispersionless Gelfand-Dickey hierarchy with sources (dGDHWS) is presented. PACS number: 02. 03. Ik

متن کامل

The Toda Hierarchy and the Kdv Hierarchy

McKean and Trubowitz [2] showed that the theory of the KdV equation ∂ ∂t g(x, t) = ∂ 3 ∂x 3 g(x, t) − 6g(x, t) ∂g ∂x (x, t). is intimately related to the geometry of a related hyperelliptic curve of infinite genus, the Bloch spectrum B g t of the operator L g t : ψ → d 2 dx 2 ψ(x) + g(x, t)ψ(x), where g t = g(x, t). As was known classically, B g t is independent of t, when g(x, t) evolves accor...

متن کامل

Function of the Kdv Hierarchy

In this paper we construct a family of commuting multidimen-sional differential operators of order 3, which is closely related to the KdV hierarchy. We find a common eigenfunction of this family and an algebraic relation between these operators. Using these operators we associate a hy-perelliptic curve to any solution of the stationary KdV equation. A basic generating function of the solutions ...

متن کامل

Feynman Diagrams and the Kdv Hierarchy

The generating functional of the intersection numbers of the stable cohomology classes on moduli spaces of curves satisfy the string equation and a KdV hierarchy. We give a proof of this classical Kontsevich-Witten result completely in terms of Feynman diagrams.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Nonlinear Science

سال: 2015

ISSN: 0938-8974,1432-1467

DOI: 10.1007/s00332-015-9272-7